
Wodan
a pure OCaml, flash-aware filesystem library

Gabriel de Perthuis – OCaml Labs

Problems and motivation

Motivation: MirageOS
MirageOS is a library operating system written in OCaml. Mirage builds unikernels.

Operating system components are linked as libraries.

More tuned, more secure.

Put control: layout details, performance trade-offs in the library user’s hands

Unikernels: slicing things up

Storage challenges
Present a usable API, on top of hardware with complex characteristics

Usable: sufficiently expressive but also efficient.

Hardware: disks, flash, SSDs, persistent memory / NVM, hybrid devices…

Storage challenges: general
Atomicity

Reordering

Bit rot (durability)

Storage challenges: specific
A hardware primer

Pros Cons

Disks Cheap, large Seeks

Flash Fast Erase cycles, endurance

SSDs Fast FTL complexity, write
amplification

Design and solutions

Usability and expressiveness
Irmin can provide a high-level, expressive API

Irmin is Git-like: objects, trees, commits and references. Functional updates.

Wodan provides fixed-length keys and bounded-length values.
On the low end of the expressiveness scale, but sufficiently expressive to layer a
chunking layer and then Irmin on top without affecting performance. With some
tricks, this is also sufficient to express a variable-length key API (used by some of
the Irmin internals).

Irmin’s model

Layering Irmin

Irmin blobs Irmin meta Irmin refs

Chunking Hashing (+other tricks)

Wodan

The key-value layer
Present a key-value API on top of an efficient, functional, wide-branching tree
structure.

Wide-branching trees minimize seeks, and a functional structure won’t need
rewrites, while being atomic and non-amplifying. This addresses the
characteristics of disks and flash.

Concretely, use hitchhiker trees, an optimal implementation of a functional
wide-branching tree.

Hitchhiker trees; Bε-trees
Hitchhiker trees are the functional version of Bε-trees

Bε-trees derive from B+trees

Instead of containing just children pointers (B+tree parent nodes) or data (B+tree
leaves), each node contains both. A node contains reserved space for buffered
data and children pointers.

A new tree operation: spilling

Advantage: writes become much cheaper and closer to the root. In the functional
version, no path dirtying. Cost: depth hit of at most a constant factor ε.

B+trees

Functional trees
Path dirtying

Hitchhiker tree node layout

A red zone is used to separate the data and child arrays.

Meta:
type,
gen

Key,
data len,
data

Key,
data len,
data

… Key,
child loc

Key,
child loc

CRC32C

Bε-tree example

Bε-tree example: insertion

Inserting 0

Bε-tree example: insertion

Inserting -1

Bε-tree example: insertion

Inserting 28
(spill)

Bε-tree example: insertion

Inserting 29

Bε-tree example: insertion

Inserting -2
(spill)

Bε-tree example: insertion

Inserting 11.5

If the root node is at a fixed place, it gets high-frequency updates. The flash wears
out. Updates are not functional.

So don’t require a fixed location.

Store generation numbers on nodes.

Locate the root block with a bisection.

The root block challenge

General layout; bisection

Super-
block

non-root 2 non-root 4 8 1 non-root

Layout control
The block size should match the size of erase blocks (between 256k and 4M).

Prevents write amplification

● smaller blocks would be write amplified by the flash translation layer
● larger blocks would amplify writes at the filesystem level by writing more data

than necessary each time the data is checkpointed.

Key size is application controlled as well.

A custom allocator will also be added, for sequential file-backed devices.

These settings appear on an OCaml functor parameter.

Semantics control
Tombstones for empty data

In the future: upserts?

Operation control
Manually triggered at the KV layer:

● Flushing
● Garbage collection

The backing device could disappear at any point.

Prevent torn writes and detect corruption in the backing device with a per-block
CRC32C.

Prevent out of order writes: send a barrier prior to writing a root block, so that child
block references are always valid.

Consistency

Resiliency
Optionally, everything is scanned at mount time. Bit rot is detected early. Also
builds a free space map for the allocator.

Optimised default: build the free space map without reading leaf nodes, by
tracking tree depth at the root.

Insert random data.

Periodically close and reopen.

Run under AFL, American Fuzzy Lop. Maximises branch coverage.

Prepared image + fuzzing + CRC fixup + single insert.

Second reference implementation.

Testing

Use cases
Unikernels in more places

Short-lived stateful servers

Data-intensive servers

Irmin

Tezos, Datakit (Docker), CueKeeper, Jitsu, Canopy

Git storage

Redis like

Future work
Stdlib Map pull requests: start_iter_at

Better in-memory indexing of a single node

Upserts

Concurrency

Javascript port

References
What every programmer should know about solid state drives —
http://codecapsule.com/2014/02/12/coding-for-ssds-part-6-a-summary-what-every-
programmer-should-know-about-solid-state-drives/

Bε-trees — Gerth Stolting Brodal and Rolf Fagerberg. Lower bounds for external
memory dictionaries.

Hitchhiker trees —
http://www.slideshare.net/DavidGreenberg7/hitchhiker-trees-strangeloop-2016

American Fuzzy Lop — http://lcamtuf.coredump.cx/afl/

http://codecapsule.com/2014/02/12/coding-for-ssds-part-6-a-summary-what-every-programmer-should-know-about-solid-state-drives/
http://codecapsule.com/2014/02/12/coding-for-ssds-part-6-a-summary-what-every-programmer-should-know-about-solid-state-drives/
http://www.slideshare.net/DavidGreenberg7/hitchhiker-trees-strangeloop-2016
http://lcamtuf.coredump.cx/afl/

Thank you for your attention.

Go use it! https://github.com/g2p/wodan

Questions?

https://github.com/g2p/wodan

Future work
Upserts — take advantage of the functorial interface

CLI tool
wodan format

wodan dump

wodan restore

PRs (for spilling). Explain the reason for the next Map PR.

Compare with the Rust impl

Example with Irmin, Git example?

Or just code snippets

