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Abstract

MirageOS is a library operating system that constructs unikernels for secure, high perfor-
mance network applications. Until now, MirageOS lacked a reliable, usable filesystem, which
limited its applicability by introducing a dependency on an external storage service. For ex-
ample, the CueKeeper web application is Mirage-based and dependent on client-side storage.

We introduce Wodan, a filesystem library designed for MirageOS. It is designed with flash
in mind: SSDs, NVM, hybrid devices. It provides a low-level key-value layer that Irmin (a
distributed database inspired by Git) can use to store data. It is designed to be reliable and
prevent bit rot. It puts control over layout details and performance trade-offs in the library
user’s hands.

The flash focus of the design makes for some novel design choices. To prevent wearing
out the flash, the newest filesystem root can be written anywhere (in sequential order), and
opening the filesystem involves bisecting for the root.

This talk will delve into the design of Wodan.

1 A functional data structure: hitchhiker trees
To make sure writes are atomic, we use a functional data structure when writing to disk. New data
goes to another location instead of risking partially updating the disk. The main data structure
is a hitchhiker tree, a functional variant of a Bε-tree. Bε-trees were introduced as buffered B-trees
by Brodal and Fagerberg [BF03]. Unlike in a B-tree, which pushes data out to the leaves and
has only pointers to children in parent nodes, Bε-tree nodes contain both pointers to children and
a buffer of data operations. This makes Bε-trees much more efficient in write operations; most
writes only update buffers near the root. The insert path is shorter, which means less churn, which
is important because with a functional data structure modified items will be written again at a
different disk location. For efficiency, in memory the data structure isn’t functional, mutability is
used to batch changes together and bake them into dirty nodes.

2 User-defined, flash-optimised layout
The block size should match the size of erase blocks. This prevents write amplification; smaller
blocks would be write amplified by the flash translation layer, and larger blocks would amplify
writes at the filesystem level by writing more data than necessary each time the data is check-
pointed. This means the block size is between 256k and 4M on a standard SSD.

3 Consistency
Loss of communication with the backing device can occur at any point; the filesystem must ensure
the data is in a safe state. To prevent torn writes, and detect corruption in the backing device,
every block is written with a CRC32C. To prevent out of order writes, a barrier is issued prior to
writing a root block, so that child block references are always valid.

4 Resiliency
The filesystem is checked at mount time. Checking the entirety of the filesystem at mount time
guarantees the checker code is maintained and matches every implemented feature. It also allows
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early warning of bit rot. Finally, this scan provides an opportunity to build data structures such
as a bitmap of in-use blocks.

5 User control
The data layout (block size, key size) is parameterised using OCaml functors. Key operations such
as flushing are user-controlled; this makes performance more predictable.

6 Fast mounting
Mount time checks can be expensive. For large filesystems, they can be made optional by logging
the in-use bitmap periodically. An up to date bitmap can be reconstructed from a slightly stale
bitmap and the log of newer write operations. This bitmap is stored with a well-known key which
is defined in the super block.

7 Testing
The filesystem is packaged as a library, built with jbuilder. A first Mirage unikernel exercises the
filesystem code by doing writes of random data, periodically closing and reopening the filesystem.
A second unikernel is instrumented with American Fuzzy Lop and does a single insert into a
fuzzer-generated hostile image. AFL looks at the branches the code takes to maximise coverage.
Fuzzing involves magic CRCs that are regenerated in the test harness; AFL’s genetic algorithm
would otherwise be unable to generate valid CRCs most of the time.
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